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1 Introduction

2 Use case

Each year, pharmaceutical companies invest billions of dollars into developing
new medications. Despite these monumental efforts, 70% of clinical trials fail,
and the average cost to bring a new drug to market reaches $1 billion.

Clinical trials are the linchpin of medical advancement, determining whether
a new drug is safe and effective for public use. A failed trial doesn’t just represent
a financial setback; it delays potentially life-saving treatments from reaching
patients who need them most. Understanding and addressing the root causes
of trial failures is therefore crucial for both the medical community and society
at large.

One significant factor behind these failures is poor patient stratification. In
most interventional therapeutic clinical trials, patients are randomly assigned
to treatment and control groups. While randomness aims to create statistically
equivalent groups, it often leads to imbalances in critical patient attributes
—such as age, gender, ethnicity, or genetic markers. These imbalances can skew
results, making it difficult to determine a drug’s true efficacy and safety profile.

Imagine, for example, a trial for a cardiovascular drug where one group
inadvertently has a higher proportion of smokers. Since smoking is a risk factor
for heart disease, this imbalance could affect the drug’s apparent efficacy, leading
to misleading conclusions or even the failure of the trial.

2.1 A mathematical approach to patient stratification

To address the challenges of traditional patient assignment, we can formulate
patient stratification as a constrained optimization problem. This mathe-
matical approach aims to create treatment and control groups that are as similar
as possible across all relevant attributes.

Each patient i has r covariates w⃗i = (wi1, · · · , wir) that are relevant for pre-
dicting outcomes. There are n patients participating in the trial. These patients
are divided equally into m ≥ 2 treatment groups, with k = n/m patients per
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group. We introduce decision variables x⃗ = {xip}, where xip = 1 if patient i is
assigned to group p, and xip = 0 otherwise.

The goal is to minimize the discrepancy d between any two groups based
on the weighted sum of the first (means) and second (variances and covariances)
moments of the covariates.

d =

r∑
s=1

|∆µs|+ ρ

r∑
s=1

|∆σss|+ 2ρ

r∑
s=1

r∑
s′=s+1

|∆σss′ | (1)

Here, ∆µs represents the difference in the mean of covariate s between
groups, calculated as:

∆µs =
1

n

n∑
i=1

wis(xi1 − xi2)

Similarly, ∆σss′ represents the difference in the covariance between covari-
ates s and s′ between groups:

∆σss′ =
1

n

n∑
i=1

wiswis′(xi1 − xi2)

The parameter ρ adjusts the relative importance of balancing the variances
and covariances compared to the means.

Balancing the first moments, or means, ensures that the average values of
each covariate are similar across groups, reducing bias in estimated treatment
effects. Balancing the second moments, which include variances and covariances,
ensures that the variability within each covariate is similar and that relationships
between covariates are maintained across groups.

To achieve a feasible and balanced assignment, the following constraints are
applied:

1. Equal Group Sizes: Each group must have exactly k patients, ensuring
that the sample sizes are the same across groups:

n∑
i=1

xip = k, ∀p ∈ {1, · · · ,m}

2. Unique Assignment: Each patient must be assigned to exactly one
group, preventing any overlap or omission:

m∑
p=1

xip = 1, ∀i ∈ {1, · · · , n}

While this formulation can be very powerful, solving this problem using
classical computing methods is computationally intensive. For large numbers
of patients (n) and covariates (r), the problem becomes NP-hard, meaning
that the computation time increases exponentially with the size of the input
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data. This computational intensity limits the practicality of classical optimiza-
tion methods for real-world clinical trials involving thousands of patients and
numerous covariates.

For this competition, the data originates from the Mayo Clinic trial carried
out between 1974 and 1984, involving 312 participants in a randomized trial for
primary biliary cholangitis, an autoimmune condition that affects the liver. We
identified three statistically significant covariates exhibiting the most substantial
impact, including the age of the patient (w1), alkaline Phosphatase in U/liter
(w2) and prothrombin time in seconds (w3).

3 Participant solutions

We were thrilled to receive numerous high-quality submissions. To evaluate
them, we developed a leaderscore system where higher scores indicated lower
discrepancies within groups. Not only did the submissions score exceptionally
well, but they also showcased remarkable diversity. Each brought unique insights
and innovative ideas, adding immense value to the overall challenge. Here is a
brief description of the winning approaches:

1. Julien Mellaerts (1st Prize): This custom hybrid quantum-classical
workflow optimizes the use of classical and quantum resources, reducing
time complexity while maintaining optimal accuracy of patient stratifica-
tion

2. Peter Yang (2nd Prize): A hybrid quantum-classical algorithm that
solves a constrained optimization problem, leveraging the computational
power of quantum computing and the flexible formulation of classical
solvers

3. Oleksii Adamov (3rd Prize): This solution integrates a custom Quan-
tum Approximate Optimization Algorithm (QAOA) with a smart cluster-
ing strategy to reduce problem size and optimize qubit usage

4. David Esteban Bernal Neira & the SECQUOIA Team (Special
Prize): The hybrid approach combines Graver Augmented Multistart
Algorithm (GAMA) and with quantum annealing to find feasible solutions
and compute elements of Graver basis, optimizing the use of classical and
quantum resources.

4 Benchmarking

Based on the participant’s solutions, we performed experiments comparing the
performances and execution times for different patient sizes n, compared with
classical benchmarks. In this study, the models evaluated included classical,
quantum-inspired, and quantum approaches as follows:
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• GAMA: Proposed by the SECQUOIA Team, it utilizes Graver bases,
which provide a structure for generating integer feasible directions, to
explore the search space systematically. The process begins by formulat-
ing the problem as a minimization problem miny∈{0,1}n f(y) with binary
variables, subject to linear constraints Ax = b. The Graver basis G is
computed by obtaining the kernel of A, where x0 satisfies Ax0 = 0, and
take the Graver basis as G = x0 \ {0}. Initial feasible solutions (Ax0 = b)
are generated through quantum annealing by solving a QUBO formula-
tion with D-wave computers. The algorithm then iteratively improves
each solution by augmenting it in the direction of Graver basis vectors un-
til no further improvement is possible, ensuring optimal or near-optimal
solutions.

• HybridCQM: Inspired by Peter’s solution, another approach is to solve
the constrained optimization problem using D-wave hybrid CQM sampler.
This sampler combines classical and quantum resources to handle complex
optimization problems with both linear and quadratic constraints. It di-
vides the problem into smaller subproblems, solves them using quantum
annealing and classical techniques, and then integrates the solutions to
find the best result. In this case, we minimize the discrepancy as defined
in Eq. 1. This formulation leads to a constrained quadratic model with
n− 1 binary variables and 9 continuous variables.

• Kerberos: Another alternative, inspired by Julien’s solution, is to formu-
late this problem as a QUBO, where we need to minimize an expression
of the form miny y

TQy. To do so, we replace the original absolute values
by a square, so that we redefine the discrepancy function as:

d2 =

3∑
s=1

(∆µs)
2 + ρ

r∑
s=1

(∆σss)
2 + 2ρ

r∑
s=1

r∑
s′=s+1

(∆σss′)
2 (2)

In this case, the KerberosSampler is used to solve this QUBO problem. It
is a hybrid solver from D-Wave that integrates both classical and quantum
computing resources to solve optimization problems. It uses a combination
of three techniques:

– Tabu Search: A classical algorithm that helps the solver escape
local minima by maintaining a list of recently visited solutions (the
tabu list) and preventing the algorithm from revisiting them.

– Simulated Annealing: Another classical optimization method that
mimics the physical annealing process by gradually lowering the ”tem-
perature” of the system to converge towards an optimal or near-
optimal solution.

– QPU Subproblem Sampling: This involves quantum annealing,
where a portion of the problem (typically the most impactful vari-
ables) is sent to D-Wave’s Quantum Processing Unit (QPU). The
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quantum annealer explores the solution space and helps to solve sub-
problems that are difficult for classical solvers.

• Tabu: Instead of using a hybrid workflow, we can also use a classical
(quantum-inspired) solver, called Tabu search. Tabu Search is a meta-
heuristic optimization technique designed to efficiently explore the solu-
tion space of hard optimization problems. The algorithm begins by ex-
ploring the local neighborhood of the current solution. It evaluates nearby
solutions, moving towards the best available option. To avoid cycling (re-
visiting the same solutions repeatedly), Tabu Search maintains a tabu list
of recently explored solutions (or specific moves), marking them as ”for-
bidden” or ”tabu” for a certain number of iterations. The tabu list allows
the algorithm to escape local minima by preventing it from immediately
returning to previously explored, suboptimal solutions.

• QAOA: The final quantum approach, proposed by Oleksii, is to use
the Quantum Approximate Optimization Algorithm (QAOA), a hybrid
quantum-classical algorithm designed to solve combinatorial optimization
problems which can be expressed in terms of a QUBO. QAOA alternates
between two Hamiltonians: the Cost Hamiltonian HC , which encodes the
optimization problem based on the QUBOmatrixQ, and the Mixer Hamil-
tonian HM , which typically consists of Pauli-X operators that explore the
solution space. The algorithm alternates between applying the cost and
mixer Hamiltonians with parameters γ and β, while a classical optimizer
is used to adjust the parameters to minimize the expectation value of HC ,
which represents the problem’s cost function. We also use the Conditional
Value at risk (CVar) estimator.

• Gurobi: Gurobi is a classical leading optimization software extensively
used for solving a wide range of optimization problems, including QU-
BOs. It is renowned for its speed and reliability in addressing classical
optimization problems. It will be used to benchmark agains the quantum
methods.

In this study, we executed six methods across varying patient sizes n ∈
10, 20, 50, 80, 100, 150, 200, with GAMA, HybridCQM, and Kerberos leveraging
D-Wave’s quantum and hybrid solvers, while the other methods utilized classical
CPUs. Notably, QAOA, though classically simulated here, could be executed
on a gate-based quantum computer. The results, in terms of discrepancy and
execution times, are shown in Fig. 1.

From a performance perspective, Kerberos, and Tabu search algorithms con-
sistently delivered very similar results, demonstrating high accuracy in minimiz-
ing the discrepancy, which was very close to the classical benchmark. The hybrid
and quantum-inspired approaches (such as GAMA and HybridCQM) also per-
formed well, with only a slight increase in discrepancy compared to the classical
benchmarks. However, the QAOA algorithm showed a noticeable decline in
performance as the number of patients increased. This drop in accuracy may
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Figure 1: Time and performance comparison of multiple classical, quantum-
inspired and hybrid quantum-classical solutions. The black line represents the
average discrepancy obtained by random patient stratification.

be attributed to the fact that, in this study, we had to partition the patient
groups into smaller subgroups to run QAOA on classical simulators. We hy-
pothesize that running QAOA on a real quantum computer could yield better
results, particularly for larger patient sets, as it can handle the problem more
holistically without the need for partitioning.

Additionally, as the number of patients increased, the optimal discrepancy
values showed a more significant divergence from the average discrepancy ob-
tained through random assignments. This indicates that random assignment of
patients into cohorts can lead to much higher discrepancies, which underscores
the value of optimization in creating balanced patient groups for clinical trials.

When it comes to execution times, the Gurobi solver, while offering the low-
est discrepancy, demonstrated a significant drawback in terms of scalability. As
the number of patients increased, Gurobi’s execution time grew exponentially,
with the 200-patient case taking more than two orders of magnitude longer than
the hybrid approaches. This makes Gurobi less practical for larger datasets, es-
pecially in time-sensitive applications like clinical trials. In contrast, the hybrid
solvers, such as Kerberos and HybridCQM, achieved similar performance but
within a much shorter time frame. This efficiency makes quantum-inspired and
hybrid methods appealing for real-world applications where both speed and
accuracy are critical.

Overall, our results suggest that while classical solvers like Gurobi provide
optimal solutions, quantum-inspired and hybrid solvers offer a strong trade-
off between accuracy and efficiency, making them promising candidates for fast,
large-scale patient stratification in clinical settings. Moreover, as quantum hard-
ware advances, methods like QAOA could close the performance gap and offer
even more scalable solutions.

6


